NASA’s inaugural electric aircraft is close to taking flight.

  • Reading Time:4Minutes

NASA recently declared that the X-57 Maxwell electric plane has successfully passed a significant evaluation, moving it a step closer to takeoff. The aircraft’s engine controls underwent a heat test, a crucial evaluation that confirms its capability to perform in adverse weather conditions.

The X-57 Maxwell, NASA’s first electric airplane, was named after the Scottish physicist James Clerk Maxwell who revolutionized the field of electromagnetism. The project was first introduced in 2016 and has undergone several modifications and improvements, with the latest iteration being the fourth version. The aim of the project is to create an aircraft that is eco-friendly, reduces air travel time, and reduces flight noise.

The X-57 features two 60-kilowatt main electric engines situated at the wingtips, supported by 12 additional 10.5-kilowatt engines. The cockpit of the aircraft is equipped with two 180-kilogram air-cooled lithium-ion batteries that power the plane.

The recent heat test was conducted at NASA’s research center in Cleveland. The primary engine controls were subjected to temperature variations ranging from -23 to 63 degrees Celsius inside an enclosed testing chamber, which experts believe resembles the temperature conditions that the components may face during test flights with a pilot.

The engine controls drive the propellers, and it is imperative that they perform efficiently in extreme weather conditions during flight. The controllers feature silicon-carbide transistors, allowing them to operate at 98% efficiency during high-performance takeoffs and cruising speeds. The engines generate minimal heat and are cooled through the flow of air during flight.

The X-57, a two-seater aircraft weighing roughly 1.5 tonnes and with a wingspan of 10 meters, offers an environmentally friendly alternative to fossil-fuel powered aircraft. Furthermore, its electric propulsion system makes it much more cost-effective to operate than traditional aircraft, even though its performance currently lags behind that of conventional aircraft.

The X-57 has a range of approximately 160 kilometers and a flight time of up to an hour. However, NASA is optimistic and has a long-term perspective, counting on advancements in battery technology to dramatically enhance the aircraft’s performance in the near future.

The next test that the X-57 will have to pass will be the flightworthiness test at NASA’s Armstrong Flight Research Centre in California. However, it seems that despite the successful tests, the electric aircraft will never be put into service, as the development team working on the project has exhausted the resources available to it.

The X-57 was an extremely ambitious initiative with many pitfalls, which is why NASA does not often invest in similar projects, said Nick Borer, group leader of NASA’s Advanced Concepts Division.

The space agency is sponsoring a number of other developments, and while it has been generous in covering the costs of X-57, as with everything, there are priorities, so we need to finish the job, Borer added.

That said, the development process has also allowed for the construction and testing of a number of technologies that experts believe will be key to the development of the aircraft in the near future, with the first short-range, electrically powered aircraft due to enter service in about 10 to 15 years.

The X-57’s next evaluation will be the flightworthiness test at NASA’s Armstrong Flight Research Center in California. Despite the successful evaluations, it appears that the electric aircraft will not be put into service as the development team has exhausted its available resources.

Nick Borer, the Group Leader of NASA’s Advanced Concepts Division, stated that the X-57 was an ambitious project with numerous challenges, which is why NASA is cautious about investing in similar projects.

NASA is supporting several other developments and, while it has generously covered the costs of the X-57, there are priorities to consider, Borer added. Nevertheless, the development process has enabled the construction and testing of several technologies that experts believe will be crucial for the development of aircraft in the near future, with the first electric short-range aircraft expected to enter service in the next 10 to 15 years.

Source: NASA

Recent article

Additional aircraft News & Articles

Airbus’s Hybrid Helicopter-Plane Racer

Air taxi News & Articles

Europe’s First Air Taxi Set to Launch in 2026

News & Articles Propulsion-Fuel

New water-based battery, even for electric vehicles

Drones News & Articles

Very fast kamikaze drone unveiled

EVTOL & VTOL News & Articles

The EU’s Regulatory Framework for Urban Air Mobility

News & Articles Propulsion-Fuel

Biofuel-Powered eVTOLs

Flying Cars News & Articles

What will it be like to speed on the highways of the sky ?

News & Articles Points of interest

How Virtual Reality is Transforming Pilot Training for eVTOLs ?

Flying Cars News & Articles

Boeing would let flying cars into the air

Drones News & Articles

Remote refuelling drone

Drones News & Articles

More and more things are being delivered by drones

EVTOL & VTOL News & Articles

New design solves one of the biggest problems of eVTOLs

Electric airplane News & Articles

Advancements in Propulsion Technology

EVTOL & VTOL News & Articles

Unraveling eVTOL Operational Costs and Solutions

Air taxi News & Articles

First urban air taxi services to start soon

News & Articles Propulsion-Fuel

Biofuel-Powered Aircraft and Drones

Flying Cars News & Articles

The Resilience of Flying Cars in Adverse Weather Conditions
More articles you may be interested in...

News & Articles Propulsion-Fuel

Exploring Solid-State Batteries in eVTOL Applications: A Leap Towards Extended Range and Reliability

Electric Vertical Takeoff and Landing (eVTOL) aircraft represent a transformative advance in urban mobility, promising.......... READ MORE

EVTOL & VTOL News & Articles

New design solves one of the biggest problems of eVTOLs

Crisalion Mobility’s innovative eVTOL aircraft design solves a critical challenge in the field of electric.......... READ MORE

News & Articles Points of interest

One of the world’s biggest online stores to use missiles to deliver parcels

Alibaba promises to deliver a car to anywhere in the world in a day with.......... READ MORE

Electric airplane News & Articles

Advancements in Propulsion Technology

In the realm of aviation, the propulsion system acts as the heart of any aircraft,.......... READ MORE

EVTOL & VTOL News & Articles

Unraveling eVTOL Operational Costs and Solutions

Electric Vertical Take-Off and Landing (eVTOL) aircraft are on the brink of revolutionizing urban mobility.......... READ MORE

EVTOL & VTOL News & Articles

Interoperability Challenges in Urban Air Mobility: Can EVTOLs, Drones, and Flying Cars Share the Skies ?

In the rapidly evolving landscape of urban air mobility (UAM), the dream of skies bustling.......... READ MORE

EVTOL & VTOL News & Articles

How are countries collaborating to standardize regulations, safety protocols, and infrastructure development for the seamless integration of eVTOLs and flying cars into global airspace ?

The rise of electric vertical take-off and landing vehicles (eVTOLs) and flying cars is not.......... READ MORE

Air taxi News & Articles

First urban air taxi services to start soon

Test flights of the AutoFlight air taxi have been successful, and air taxi services will.......... READ MORE